bonsoon's blog |
| latest | about | random
# Equivalent statements to PNT. Most commonly, the prime number theorem states $$ \pi(x) \sim \frac{x}{\log x} $$ Another form is $$ p_{n} \sim n \log n $$Here $\pi(x)$ denotes the usual prime counting function, the number of primes less than or equal to $x$; and $p_{n}$ denotes the $n$-th prime. Note that $\pi(p_{n}) = n$. And recall we write $f(x) \sim g(x)$ if $\lim_{x\to \infty} f(x)/g(x) =1$. We shall prove the following equivalence, following Apostol, 1. $\pi(x) \sim x / \log x$ 2. $\pi(x) \sim x / \log \pi(x)$ 3. $p_{n} \sim n \log n$ Suppose $\pi(x) \sim x / \log x$. Then this means $$ \begin{align*} & \lim_{x \to \infty} \frac{\pi(x)\log x}{x} = 1 \\ \implies & \lim_{x \to \infty} \log \pi(x) + \log \log x - \log x = 0 \\ \implies & \lim_{x \to \infty} \log x \left( \frac{\log \pi(x)}{\log x} + \frac{\log \log x}{\log x} - 1 \right) = 0 \\ \end{align*} $$ Since $\log x \to \infty$ as $x \to \infty$, we must have $$ \lim_{x \to \infty} \frac{\log \pi(x)}{\log x} + \frac{\log \log x}{\log x} - 1 = 0 $$ Now, $(\log \log x) / \log x \to 0$ as $x \to \infty$, hence $\log\pi(x) \sim \log x$. Hence we have $$ \pi(x) \sim \frac{x}{\log x} \sim \frac{x}{\log \pi(x)}. $$ Now, suppose $\pi(x) \sim x / \log \pi(x)$. Note for each $n$, we have $\pi(p_{n}) = n$. Note as $n \to \infty$ so does $p_{n} \to \infty$. So, $$ n = \pi(p_{n }) \sim \frac{p_{n}}{\log \pi(p_{n})} = \frac{p_{n}}{\log n}. $$So we have $$ p_{n} \sim n \log n . $$ Now, suppose $p_{n} \sim n \log n$, For each $x$, write $n$ such that $p_{n} \le x < p_{n+1}$, Note as $x$ increases, so does $n$. Also note $n = \pi(p_{n}) = \pi(x)$. Note $$ \frac{p_{n}}{n \log n } \le \frac{x}{\pi(x) \log\pi(x)} < \frac{p_{n+1}}{n \log n} = \frac{p_{n+1}}{(n+1)\log(n+1)} \frac{(n+1)\log(n+1)}{n \log n} $$Hence, $x \sim \pi(x)\log(\pi(x))$, or in other words,$$ \pi(x) \sim \frac{x}{\log \pi(x)}. $$ Lastly, if $\pi(x) \sim x / \log \pi(x)$, then $$ \lim_{x\to \infty} \frac{\pi(x) \log \pi(x)}{x} = 1, $$ so $$ \begin{align*} & \lim_{x \to \infty} \log \pi(x) + \log \log \pi(x) - \log x = 0 \\ \implies & \lim_{x \to \infty} \log \pi(x) \left(1+ \frac{\log \log \pi(x)}{\log \pi(x)} - \frac{\log x}{\log \pi (x)}\right) = 0 \end{align*} $$ Since $\log \pi(x) \to \infty$ as $x \to \infty$, we must have $$ \lim_{x \to \infty} 1 + \frac{\log \log \pi(x)}{\log \pi (x)} - \frac{\log x}{\log \pi(x)} = 0. $$And since $(\log\log\pi(x)) / \log\pi(x) \to 0$ as $x \to \infty$, we have $$ \log x \sim \log \pi(x). $$Hence $$ \pi(x) \sim \frac{x}{\log \pi(x)} \sim \frac{x}{\log x}. $$